Cellule : Mathématiques Classe: Terminale L

Durée: 2h

DEVOIR DE MATHEMATIQUES N°1 DU PREMIER SEMESTRE

EXERCICE N°1

(11 points)

Le tableau ci-dessous donne le nombre de voitures neuves (en milliers) vendues en France durant les cinq dernières années. Echelle: abscisse 1cm pour 1; ordonnée 1cm pour 25.

Années	2018	2019	2020	2021	2022
Rang de l'année : X	1	2	3	4	5
Nombre de ventes : Y	250	225	200	150	125

- 1. Représenter le nuage de points de la série (X, Y) dans un repère orthogonal $(O; \vec{i}, \vec{j})$. (1,5pt)
- Calculer les moyennes \bar{X} et \bar{Y} , puis placer le point moyen G du nuage de points dans le repère. (1,5pt)
- Calculer Cov(X, Y), Var(X) et Var(Y). (3pts)
- Calculer le coefficient de corrélation linéaire r. Puis interpréter le résultat. (1,5pt)
- Déterminer une équation de la droite (D) de régression de Y en X · (1pt)
- On suppose que la droite (D) de régression de Y en X est :Y = -32.5X + 287.5
 - Représenter (D) dans le repère (O; i, j). (1pt)
 - Quel nombre de ventes de voitures neuves pouvait-on prévoir pour cette année 2023 ? (1pt)
 - c. En quelle année pouvait-on prévoir que le nombre de voitures neuves vendues en France serait égal à 27 500 véhicules? (0,5pt)

EXERCICE N°2

(9 points)

Partie A: Pour chaque question répondez par a, par b ou par c.

- 1. La droite de régression de Y en X d'une série statistique est Y = 0.5X + 7, alors le point moyen G de cette série est :
 - a. G(7; 0,5)
- b. G(7; 10,5)
- c. G(0,5;7)

(2pts)

- 2. La droite de régression de Y en X d'une série statistique est Y = 3.5X + 2 et Var(X) = 8.5 alors :
 - a. Cov(X; Y) = 30.5
- b. Cov(X; Y) = 28,75
- c. Cov(X; Y) = 29,75

(1,5pt)

3. La droite de régression de X en Y d'une série statistique est de la forme X = a'Y + b' avec :

a.
$$a' = \frac{Var(X)}{Var(Y)}$$

b.
$$a' = \frac{Cov(X,Y)}{Var(Y)}$$
 c. $a' = \frac{Cov(X,Y)}{Var(X)}$

$$a' = \frac{cov(X,Y)}{Var(X)}$$

(1,5pt)

Partie B: On considère le tableau statistique suivant :

X	2000	1800	1500	1200		
Y	350	300	200		150	
T	571,42	600	750			1000

 $T = 100 \times \frac{X}{V}$. **On donne :** La droite de régression de Y en X est : Y = 0.24X - 100Compléter le tableau ci-dessus. (4pts)

Bonne Chance!